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Twist modulated phases in chiral smectic liquid crystals
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By considering short period helical planar modulations about the layer normal, we construct a model free
energy for the ferriclinic phases observed in chiral smectic liquid crystals. We then use this free energy to
construct the phase diagram for our model. The resulting phases are compared with the experimentally ob-
served smecti€* subphasegferroclinic, antiferroclinic, and heliclinic A strong coupling is found between
the ferroclinicq=2s/a and the heliclinicq=2#/3a modes. This coupling was not considered in previous
models. The resulting additional stability of this “locked in” phase is discusp®ti063-651X99)10607-X]

PACS numbegs): 64.70.Md, 61.30.Cz

I. INTRODUCTION formed from a repeating three-layer unit with two parallel
and one antiparallel tiltéa “ + + — + + — "-type structure.

In a smectic liquid crystal the molecules assemble themRecent experimental eviden¢@] suggests that other ferri-
selves into periodic layered structures. By convention, thelinic phases with three-layer and four-layer repeat units ex-
layer normal defines theaxis of the system. The molecules ist as well. To date, neither the structure of the Spphase
of the liquid crystal are anisotropic, which often leads tonor the structure of the majority of the other ferriclinic
pronounced birefringence effects. For the systems we wilphases have been experimentally determined.
consider, the molecules can be viewed as elongated ellip- Nevertheless, several models have been put forward to
soids, in which case the long axis of the molecule coincide§Xplain the variety of structures seen in the ferriclinic phases
with the extraordinary index of refraction. of chiral smectic liquid crystals. One set of models predict

In the smecticA (Sm-A) phase, the average orientation of that the form of the ferroclinic pha& is a “Devil's stair-
the long axis of the molecules is parallel to the layer normal€as€” with a formally infinite series of abrupt step-by-step
In the SmE phases, the orientation tilts and develops a Com_changes[Z—9] between the compIeFer parallel ordermg of
ponent perpendicular to the layer normal. In the Srphase the SmC* and the completely antiparallel orderlng of the
itself, the molecules all tilt in the same direction throughoutsmCA phases. The_sg models ge_ngrally cons_|der th_e .system

. : to be in a superposition of ferroclinic and antiferroclinic or-
the sample. In a chiral material, on the other hand, as on

moves along the axis, the tilt direction precesses about thegsrlg?af}:g ?gggggls: r;taetf)ort])y;t(:xn)ugrf]lﬁlrlléelaa;nerlskljr)\/glrggg é'll'he
!ayer n_orr_nal with a period mliCh larger than the layer spactiner set of models are discrete phenomenological models
ing. This is known as the Si6* phase. Because these mol- (14 17 with competition between nearest and next-nearest
ecules lack a center of inversion, the $Ifi-phase can pos- pejghbor interactions leading to a continuously unwinding
sess a spontaneous ferroelectric polarizatidj. This  pitch, from ferroclinic, through ferriclinic, to antiferroclinic.
polarization couples strongly to an applied electric fieldp yariation on this general approach was proposed by Lor-
which has applications in the manufacture of optical devicesygnet al.[12] that shows a variety of discreet phases instead
Ferroclinic phases are liquid crystal phases where the avss the single continuous phase.

erage tilt vector points in the same direction from layer to  ag mentioned above, a common feature of models based
layer, ignoring any rotations due to the chiralithe tilt vec- 5 the Devil's staircase is that they assume that for lengths

tor is defined as the vector difference between the directog, ihe order of a few times the layer spacing the molecules
and the layer normaln antiferroclinic phases, on the other always remain in a single plane: the molecules are either

hand, the tilt vector changes direction between adjacent laysarajlel or antiparallel. While this is certainly what is ob-
ersc,=—c, . Ferriclinic phases are the intermediate caseserved in the Sn&* and SmE, phases, there is no reason
where the tilt vector is neither parallel nor antiparallel to theto assumea priori, that this is the only possibility. The
adjacent layers. In the chiral materials we consider belowdiscrete models on the other hand, while they do allow for
these phases also possess spontaneous polarizations; chitghtions about the layer normal, have used simple expres-
ferroclinics are necessarily also ferroelectric, etc. sions for the fourth order terms in the free energy and seldom
Subphases of the ferrocliniéerroelectri¢ Sm-C* phase show a very wide variety of possible phase transitions. To
have been observed in materials such as(1-4- the best of our knowledge, no one has previously looked at
methylheptyloxycarbonyl phenyl 4-octylbiphenyl  the implications of including fourth order terms that are sym-
4-carboxylate(MHPOBC). These subphases are known tometry allowed and provide strong couplings between differ-
include at least one antiferroclinic pha&@m-C,) as well as  ent Fourier components.
a ferriclinic (Sm-C,) phase and the uncharacterized Sp- In this paper, we introduce a free energy that is more
phase. In other materials, additional ferriclinic and antiferro-general than the one previously considef#d,12 for rota-
clinic subphases have been reported in the literature as welbns about the layer norm#&Sec. I). From this, we derive
[2,3]. The SmE,, ferriclinic phase is believed4,5] to be  the phase diagrams and structural organization when the or-
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der parameter is nonzero. The possibility of finding a large
number of distinct phasdtke the Devil's staircase and con-
sistent with experimental observations of periods three times
the layer spacingwill be demonstrated in Sec. V. ' k1 B2 K3 4 W5

FIG. 1. Example of a heliclinic phas&k€2m/4a in this ex-

ample.
Il. A MODEL FREE ENERGY
We begin by considering the the S@t phase, which we F= 2 a(S-S ) +b (S g_k)z
choose to view as a system of layer-averaged tilt vectors. k
The tilt vectors are constrained to point perpendicular to the
layer normal and the magnitude of the tilt vector is equal to +Z E 2 Ck,k’,k”(ék'ék')(ék”‘é—k—k’—k”)
the sine of the tilt angle. To simplify the model, we imme- Kok K'#k
diately assume that this is a bulk system so that surfaces can +0(S%), )

safely be ignored. Further, we will work in the mean-field

limit which assumes that the. layers are completely “”ifom\/vhere the sum is over wave vectoks=27/na, n=+1,

so that all the gradient terms in the free energy are identically-2 ~3 . andais the smectic layer spacirgee Fig. 1

zero. We now will demonstrate how the ferriclinic phasesthe sixth order terms are expected to be small and will not

can be modeled as a series of helical modulations of thge considered further. Defining=27/a, it is easily seen

average tilt vector. These phases are what we COHeCtiYe%atéq is the ferroclinic order parameter of the smectis

refer to as heliclinic phases, since the tilt vector rotates in a . L2 . -

helical fashion along the axis (the layer normal anXY spin), thle_: SWAS the.antlf§rroclln|c order p_arameter.
The Landau free energy of a system is constructed b hat we caII.Sq is often wr|ttenSO, but to better illustrate _

summing together all the symmetry-allowed combinations o he relationship between the different wave vectors,yve will

the average tilt vector per layer multiplied by some set of2lways refer to the ferroclinic order parameter 8.

(phenomenological Landau coefficients. Constructing the The next termSy;, we call the heliclinic order parameter,

Landau free energy for our model system up to fourth orderyhich is similar to the order parameter for the planar

we find helimagnetic phases observed in some rare-earth magnetic

materials such as Terbiurfil3]. The fourth order term

(Sy-S_qa) (S_q3° S_q2) provides a direct couplingmode
locking) between the§q and §q,3 order parameters. We will
show below that the phase of this term can always be chosen

so that this term has a negative coefficient and th@,gfis

> > B, ik (S éj)(§k~§4)+0(36), (1)  present it will become energetically favorable &{to have

==k T a nonzero magnitude as well. This mode locking extends the
range over which it is energetically favorable to have a fer-
roclinic component. This extra stabilizing term has important

where the sums range over all layers in the system. Theonsequences when we construct the phase diagram. Because

vectorS is the average tilt vector for tHeh layer. While this ~ additional terms are likely to be small and because we wish

written asE), we will use & throughout this paper to help we will assume from here on that we are working in a region

. . f the ph iagram where wi not n t nsider Fou-
draw out the similarities between this model and S|mple0 € phase diagra ere we do not need to consider Fou

) ) ) ) rier components witm>3. At this level of approximation,
magnetic models. Thé;j” and theAjy’ are, by convention,  {here are no other mode lockings between different Fourier
assumed to vary with temperature while Bg, ;| are con-  gdes.

N>

Fzgi AN(S - §)+AP(SxS)-

+

N| =

sidered constants. Further, we assume thatAtlseand the Explicitly writing out the summation up ta=3, we find
B’s are short ranged, which is what is observed experimen-
tally. The chiral term §-S,)(S,xS) is also symmetry al- F=Fo+Fint,

lowed, but we assume that this term is small and may be

ignored due to its chiral nature. Ang(x S;)- (S, ) term where

is nonchiral and can be transformed into terms we have al- Lo - o .
ready included. If we limit interactions to only next-nearest Fo=2a1(Sq"S-q) + @2(Sg2- S-qr2) +a3(Sgra- S-g13)
neighbors, then the second order terms in Eq.are the e & N2 d & 2 a & 2
same as those in the free energy discusseddpid@and Zeks D1(SqrS-q)"+ b2(Sqr2r S-i2) "+ b3(Sqra+ S—qre)

[11]. In this E)aE)er, however, .We allow for fourth ordgr terms +Ciz(§q' §fq)(§q/2' §fq/z) +cly gq_ éfq)(éq/? équS)
beyond the §- S)? term used if11]. These terms provide an o L
important coupling between specific Fourier modes and must ~ +C25(Sy2° S—q/2) (Sgsa* S—g13) )

be included in a proper analysis.
Taking the Fourier transform of Eql), and
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Fin=b{(Sg S0 (S-S 9) TD5(Syz Sq) (S g2 S g 2N
+b3(Sqra- Sya) (S—gra- S_qa) + €1 Sq- S_ o) Fie=bIX4+ b Y*co2(2 ) + bLZ[ 1 - sirf(2a)sir?
X(S_q- Sq2) +Cie Sq-S_q3)(S_q- Syd) X (= )]+ (ClpH C1p)coS(h)X?Y2+ (clgt T,
X COZ () X?Z%+ (Chat Cha) Y222 cod(p— a)
—sin(2¢)sin(2a)cog[ (— 0)/2]} + C1339X Z° coq @)
X[cog(a)coq3¢)—sirf(a)cod 20+ )]. (10

+Clha( Syra- S-qr2) (S—qr2 Syra) + €4Sy Sr0)
X(S_qS_q2) + 14 S Sia) (S S_qp3)

w2 2 = = C1333. = =
oA Sarz Sya) (S-qi2° S-qi8) T 5 LSy S0 The above free energy contains a large number of free
. . . parameters that must be found by minimization. This yields a
X(S_q13°S-_q13) T (S_q- Syra) (Syr3- Syr3) |- 4 large system of simultaneous equations that must be solved
to produce a complete solution. In this paper we only con-

Sinceék is the Fourier transform of a real functioék* sider the special case where antiferroclinic behavior is not

=S_, and so we can immediately rewrite Ed) as present and consequentfy=0. Since there is no mode lock-
ing between the antiferroclinic component and any ofer
Fint= 01| Sy~ Sl >+ b5| Sqr2- Szl 2+ b5| Sqrz- Syral? for k=2/3, this is the same as constrainiag, c;,, andcj,
. . . to be positive. These added constraints simplify the free en-
+C15 S S- gl + €14 Sy S_qral *+ €54 Sr2- S- g3l ® ergy considerably and we are left with
+ 15 Sg- Sl >+ €74 Sq- Syl + €54 Sqr2- Sl Fo=a,X2+asZ%+ by X4+ bezt+¢cjX?2% (11
+C1323ReE{(S_q Sqr) (Sysa- Sera) - ®)  and
lll. ORDER PARAMETERS Fine= — b3Z* sirf(2a)cog(y— o) + ¢153c08( a) X222
The ferroclinic order parameter, as a real valXedspin, + C133X 2% cog a)[ coS(a)cog 3¢)
has two independent variables. These can be taken as the i
magnitude and direction of the vector. We define xtaxis —sin(a)cog 20+ )], (12)
of our coordinate system using the ferroclinic order param-

= where we have defined
etequ,

o N N C13= C’1/3+ C/1/,3'
Sq= Syl x=Xx. (6)

R ”
The antiferroclinic order parameter is also a 3l spin and by =by+b3, (13
so it too must have two independent variables. Let the first S
be the vector magnitude and the second be the coordinate bs=bs+bs.

system relative to the ferroclinic order parameter, . o
Note that while the free energy does not explicitly depend on

the sign ofa, the parametea; must have an implicit depen-
dence orx since a chiral system distinguishes between right-
handed and left-handed modulations. We will return to this
With the heliclinic order parameter, unlike with the ferro- POINt later on when we construct the real-space orientations
clinic or antiferroclinic order parameters; g/3 is not the ©f the molecules. . o

same as- /3. Thus, the heliclinic order parameter is a com- Next we reparametrize and ¢ by defining

plex XY spin with four free parameters. Parametrize this

Sy2=|Sqal[XCOS )+ Sin( 4)]=Y[ X cos )+ sin( ).

order parameter as y=o—1,
(14
- > oS . LS. . =o+
Sqa=|Sqal[X cog @)e iy sin()e'”] o=ty
—7d ‘”[;Zcos(a)—iy?sin(a)e‘(“‘ ", ) so that Eq(12) becomes
W74 252
whereZ, «, ¢, ando are the four independent variables. Fin=— b3Z* sin(2a)cos () + c15c08(a) X?Z
Using the definitiong6)—(8), and substituting into Egs. + 1339 Z° cOg @)[ cog 38)cos ) cog 2a)
(3) and(5) we find
+sin(3d)sin(y)]. (15

Fo=aiX?+ayY2+a3Z%+ by X*+ by Y4+ bjz* + ¢ X2Y?
w29 2on Since § only appears in the final term of E¢L5) we can
+C1aXZ 7+ CpaY L (9 quickly find the value ofs that minimizes the free energy
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V. PHASE DIAGRAM AND CHARACTERIZATION

——= = —sin(3d)coq y)cog 2a) + cog 35)si =0.
3(36) (39)cogy)coq2a)+cog39)sin(y) Since all the temperature dependence of the free energy

(16)  (21) is assumed to be contained & and az, these two

parameters determine the phase of the system. First, consider
IV. MODE LOCKING the parametey. Looking at the free energ§2l), it is imme-
diately apparent that ib3<<0 then co§y)=0 always mini-

A.l! the terms in Eq.(15) except for thecl?’_33 term are  izes the free energy. If, on the other hab§ljs positive, it
positive semidefinite functions af. Thus, the sign of coa) i ,qef to consider a reparametrized free energy. Let
is completely determined by this one term and consequently

cog a)XZ3¢334 cog35)cog y)cog 2a) +sin(38)sin(y) ] {=coq ),

<0 (17)
£2=cod(y)sirt(2a),

if F is to have its minimal value. Let cag( be such that

— c0g @) C1339¢ 2% cOg 35)cog y)cod 2a) and the free energ{2l) becomes
*sin30)sin(y)[>0. (18) F=Fo—b4Z*&2+ c1X?Z2(2— C133X 230 1— €2.

X and Z as the magnitude of vectors are intrinsically non- (22)
negative. If we rewrite the absolute value as

|cog36)coq y)cog2a)+sin(38)sin(y)|

First minimizing with respect td@, we find

= J[cog38)cog y)cog 2a) +sin(33)sin(y) ], (= 013332\/1_—52.
(19 2¢13X
then after expanding and substituting E&6) into Eq.(19)  From the definition ofZ, if this results in|¢|>1 then the
to eliminate s, we find minimum must béZ|=1. Assume for the time being that the
. . equilibrium value ofZ is such thatZ|<1 since iff=1 then
|cos(35)cod y)cos 2a) +sin(3)sin(y)| £2=0 from our definition of¢? which implies thaty is un-
= J1=sirf(2a)cod(y). (20) determined. Substituting back into the free energy,
This yields the free energy Crand Crand
F=Fo— —2 74 ( 1339 —bg)z“gz. (23)
F=Fo+Fint. 413 4C13
Fo=a;X2+azZ%+ b, X*+b3Z%+ ¢;X%Z2, By inspection, the equilibrium value &f is
(21
Fine= — b3Z* sirf(2a)cog(y) + ¢,13c08( a) X222 £2=0, Crasldcis—b>0,
— Cy33X 28 cod @) V1 —sirA(2a)coZ( 7). (24)

. . . £2=00,  Cy33/4C 3~ b5<0.
The noninteracting portion of the free ener§y, behaves

much like a magnet in the mean-field approximation and for )
arbitrary wave vectok has the form Since mathematicallyZ|<1, however £2 can never exceed

unity. Looking back on the definitions dfandé, the proper
interpretation of this result is that cgs) takes on only two

f=aK(Sc- S_1) + b(Sc- S_) >+ 2 Crk (S S-p) values: zero or unity. The equilibrium value of &g is the
K one that results in the lower free ener@#).
X (Ser-S_pr). First, consider the case when é@g=0, whose phase

diagram is summarized in Fig. 2. Minimizing the free energy
For any given modé, the summed, ,, terms act as a per- (21) yields a system of equations:
turbation to the quadratia, term. This shifts the transition

point in a nontrivial manner, but does not modify the under- IF

lying physics. The interaction terf,;, on the other hand, is —=0

responsible foamong other thingsthe mode locking be- X

tween theS, and Sy;; modes, which stabilizes specific Fou- =a;X+2b, X3+ XZ7[ ¢|5+ c15c08(a) ]

rier components. These restoring forces add phases to the .
phase diagram that do not have any analog in the simple - 3
magnetic systems modeled By 5 C1asCOd @) 2%, (25
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2 asCla— 2ay[bs—(C1338/4C13) ]
w2 83C1s™ 2l D3 : 1333 1’32 | 32
4by[b3—(C13337/4C13)] —Cy3
II I
- a;C15—2azb, 33
_____________ 4b;[bz—(C1335/4C13) ] —C15°
|
coq @) = C133/2C13X. (34
III IV Note that cosf) is proportional taZ, which justifies my pre-
vious statement that cag(=0 whenZ=0. From Eq.(32),
the phase transition fro=0 to Z2>0 must occur when

FIG. 2. Phase diagram fdn;<<0. Phase | is the isotropic phase, Ci3
Il is the ferroclinic, 11l is the ferriclinic G<cos()<1 phase, and IV a3=5a1. (35
is the ferriclinic cosf)=1 phase. Dotted lines are coordinate axis, 1
solid lines are continuous transitions, heavy dashed lines are dis-

continuous transitions. When cos§)=1, the system undergoes a continuous tran-

sition to a new phase, since the value of @)s6 unable to
increase further. Setting E¢B2) equal to unity, this transi-

* -0 tion occurs when
0z
2b;Cy333'+ 4C] T (36)
=Z| ag+2baZ%+ X ¢l .+ & = ; as.
as 8 [C15F CrsCOS ()] 8b3C35— 2C13C1337 + C1C1333
3 In this phase, the equilibrium values ¥fandZ are given b
— 5 CusaXZ cog a)) , (26) P q given by
0=a; X+2b, X3+ (gt 1) XZ?— 133232, (37)
JF
o =0=XZ2¢;X cod @) ~ C153F]- (27 0=a5Z + 20573+ (C) g+ C19) X2Z— 3C133X Z2/2. (38)

hile of simple form, these equations are difficult to solve
or arbitrary coefficients and we will leave them as they are.
While it might appear that a stable phase witk-0, Z
#0 is possible, this is not the case. Whés 0, minimizing
the free energy in Eq25) requires that coa)=0. Physi-
X=Z=coga)=0. (28 cally, however, whenXx=0, the coordinate system is no

longer defined and so, by extensi(ﬁa,g must be rotationally
invariant. From the definition ofsq,3 in Eq. (8) and setting

SinceX andZ are the magnitudes of vectors and hence mus,
be non-negative, for;>0 anda;>0 the system is in an
isotropic phase with

Since it has no tilt, this phase must be the Bmphase of the
liquid crystals. Exactly at the poira; =az=0, the quadratic ,
tgrms inythe free ene)r/gy vanizh and there is a cqritical point €0s@) =0, one finds that

Next, consider the quadrant wheeg<0. Sincea; is . N
negative, we expect thatwill be nonzero. For large enough Syz=—i2y,
values ofag, one always findZ=0 and as a consequence
cos() is unspecified. Equation@5) and(26), however, are  Which is not rotationally invariant. Further, looking at the
easily solved. Anticipating the case wh&m:0, we assign stability of the free energy at that point we see that
cos()=0 and so

9°F 2o X7
X2=—a,/2b,, 29 S eod 2 <0 '
! ! ( ) 5005(6!) cos(a)=0
7°=0, (30 which is zero wherX=0. This implies an inflection point in
the free energy which is incompatible with the requirement
coga)=0, (31)  from Egq. (25) that cos@)=0 be a minimum whenX=0.

Hence, we conclude that no additional phases can appear so

which are the results one would expect for a simple ferrolong as co¥y) remains zero. Thus as a consequence of the
magnet or, in our case, the ferroclinic phase. mode locking betweeéq,g andéq we find that a ferroclinic

As ajz decrease< eventually becomes nonzero. Whether component is present even when all terms contaid{Adn
this happens foas positive or negative is determined by the the free energy are positive.
sign ofc},. Equationg25)—(27) are once again easily solved  Minimizing the free energy when c&{3)=1, on the other
and we now find hand, yields a system of coupled equations
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11 I x P ‘
| +1 1+2

FIG. 4. Phase lll, cd$y)=0 [X#0, Z#0, 0<cos@)<1]. The
resulting tilt vector,é/, is plotted for/'=1,2,3.

3

Vv WhenZ+0, the system is in either the &¢$)=0 phase

we looked at above Eq32) or it is in a new coqy)=1

phase, depending on the sign aF in Eqg. (42). In the

cos(y)=1 phase, the full set of Eqg39)—(41) must be

FIG. 3. Phase diagram fdw;>0. Phase | is the isotropic phase, solved to Completely determine the phase dia@!ram of '_[he
system. A few solutions, however, can be obtained by in-

Il is the ferroclinic, 11l is the ferriclinic 6<cos)<1 phase, IV is . . ;
spection. First, if cog()=1, then the systeni39), (40) be-

the ferriclinic cos@)=1 phase, and V is the pure heliX€0) | ; ] .
phase. Depending on the signf F, region IV may or may notbe COmMes identical td25), (26) and we conclude that in this

present in a given system. Dotted lines are coordinate axis, solifegion co$(y) is undetermined, which we could have in-

lines are continuous transitions, heavy dashed lines are discontinfierred from the definition oéq,g in Egs.(8) and (14).
On the other hand, wheX=0 it is immediately apparent

III
IV

ous transitions.

that
JF o
<= X=0,
=a1X+ 2b1X3+XZZ[C5_3+Cl3COSZ(C¥)] Z:_a3/2(b3_bg ’ (43)
1 cof a)=1/2
- §C1333cos(a)Z3|COS(2a)|, (39 1a)=1/2
is the solution.
JF Finally, if cos(@)=0 anda;>0 then the free energy once
—Z=0 again takes on the functional form of a magnet in a mean
J field and we are left with
=a3Z+2b3Z3+ X?Z[ c}5+ C15c08 (@) ] X=0
3 2 "3 i
_§C1333C010[)XZ |CO$20[)|_2b32 Sln2(2a), Z:_a3/2b3,
(40 coga)=0. (44)
JF However, since we know thdt; is positive[or else co¥y)
(9—:0 would be identically zerp the solution given in Eq(43)
o
always has a lower free energy than Etg). Consequently,

Eq. (44) is unstable with respect to E¢43).

=8hb3Z" coq )cog 2a) + 2¢15X?Z2 cog a)
Numerical investigationgassigning order of magnitude

~ 102 |cos2a) | + 4C052(a)C05{2a) estimates to the various constant paramgiadicate that for
133 “ |cog2a)| ’ some range of parameters, there is also an intermediate
#0, Z#0, 0<cos()<cos(r/4) phase with cd§y)=1. The

(41) analytic solution, however, is sufficiently difficult that we are

These equations correspond to the phase diagram summi#iable to investigate this phase any further. _
rized in Fig. 3. 1fZ=0, then these equations reduce to the NOW that we have completed an outline of the phase dia-

co€(y)=0 case and we recover the solution for a Sm- gram both for co¥y)=0 (Fig. 2 and for co§()=1 (Fig. 3,
phase in Eq(28) and for a ferroclinic phase in E¢29). let us examine what this says about the molecular orientation

It is known from basic thermodynamics that the systemWithin the smectic layers. If c¢))=0, then from the defi-
undergoes a phase transition when the free energy witAition (14) of y we find

cos(y)=1 is equal to the free energy with ¢$)=0 be- o=t
cause the functional form of the free energy changes abruptly
at that point. Let and so from the definition cﬁq,3 in Eq. (8)
AF=F|co2()=1— Flco2()=0- (42 - S A
costmL eosn =0 83— Z€V[X cog a) — iy 7sin(a)]

The transition from cd§y)=0 to cog(y)=1 occurs when

AF=0. = 76X cog + a)—iy sin(* a)], (45)
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FIG. 7. Phase \[X=0, Z#0, sirf(2a)=1]. The resulting tilt
vector,c,, is plotted for/'=1,2,3.

[
I

FIG. 5. Phase IMX#0, Z#0, cos@)=1]. The resulting tilt
vector,c,, is plotted for/=1,2,3.

‘ +2 ‘ +2

which, given the constraint on caeg(in Eq. (18), minimizes
F when

with X, Z, and « given by the system of equations in Egs.
(39—(41). The net effect is to change the phase of the

Refe”} = +1 component oS3 so that instead 08, - y=sin(2m//3),

Physically, this means that the heliclinic order paramégg
is completely in phasémodulo 27/3) with the ferroclinic

order parameteéq. The ambiguity in the sign o& occurs

S, =[X+Zcog a)cos{2w//3)];2+z sin( a)cos(27r//3);7
(50

as shown in Fig. 6.

because cog) is an even function oix and we have not  \yhen sin(2)=1, the ferroclinic order parameter vanishes
specified howa; depends on the sign of the chiral pitch. For (X=0) and we are left with a purely helical phadég. 7)
convenience, we assume for the rest of this paper dhat

varies with the chirality such that « is the lower energy

solution 8, =Z[cod2m/ I3+ p)x+sin2a/ I3+ )y], (51)
Ser‘:'é)s find the real-space tilt vector, just sum the Fou“erwherez,/x is an arbitrary phase. Singeis now a gauge vari-

S, — 2k (e717MN§ ) =[X+Z cog a)cog 27/ 13)]x

+2Zsin(a)sin2m/13)y. (46)

When|cos()|<1, bothX andZ are nonzero and the system
is in the two order parameter phase as sketched in Fig.
When cos§)=1, they component in Eq(49) vanishes and

both cog(y)=0 and co4y)=1 take on the same functional

form,

8, =[X+Z cod2m/13)]x. (47)

This form, with its planar three-layer unit cell and nonzero
spontaneous polarizatidsee Fig. 5, is quite similar to that

proposed by Takezoet al. [4] for the SmC,, phase.

In the cog(y)=1 phasés), on the other hand, from the

definition of y we find
o=g+nw/2.

Substituting into Eq(8) as we did to get Eq45), we now
find that

Sys=2€ "X cog ) —iye"™sin( )] (48)
=76"[Xcog £ a)+ysin(+a)], (49)
1 -

F | F 1+1 ‘ 1+2

FIG. 6. Phase Ill, cd§y)=1 [X+0, Z+#0, 0<cosf@)<1]. The
resulting tilt vector,E/, is plotted for/=1,2,3.

able this implies the existence of a spontaneously broken
symmetry with its corresponding Goldstone mode, just as the
spontaneously broken symmetry of the €h-gives rise to a
Goldstone mode in that phase.

VI. ANALYSIS

In this paper, we focused on terms in the free energy up to

Ab(S“) and only considered the Fourier modggand Sys.

We did this both to simplify the problem and because we
only expect these two Fourier modes to have large magni-
tudes. Consequently, they should be the easiest to measure
experimentally. Despite this simplified description, we find a
two order parameter region, a mode locked phase, and two
single order parameter phases, as shown in Table I. These
phases are qualitatively similar to many of the phases ob-
served experimentally. In particular, Fig. 5 bears a strong
resemblance to the form of the S@; proposed by Takezoe

et al. [4]. This model is thus able to explain a much greater
range of phase behaviors than the phenomenological model
of Cepic and Zeks[11]. Our results, however, still do not
provide a complete picture of the various SH-subphases
due to the absence of the antiferroclinic order parameter. The
antiferroclinic phases are known to play an important role

TABLE I. Summary of the different heliclinic phases and the
order paramet¢s) associated with each.

Phase Description X Z ‘“Polarization”
I Paraclinic(Sm-A*) 0 0 N/A

I Ferroclinic (Sm-C*) >0 O linear

Il Heliclinic—two order param. >0 >0 elliptical
v Heliclinic—mode locked >0 >0 linear

\Y Heliclinic 0 >0 circular
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both in the phase diagram of materials such as MHPOBC. We have recently become acquainted with a preprint by
Solving the model in the presence of all three order paramMach et al. [6] of an experimental study they have per-
eters, however, is beyond the scope of this paper. formed on 100TBBB1M7, a liquid crystal compound with
To construct an even more complete theory, especiallywo distinct ferriclinic phasesSm-Cg;; and SmEg,,) in
one that includes modes whose wave vectors are not rationatdition to Sme,,, ferroclinic, and antiferroclinic phases.
fractions of the zone boundary wave vector, several addiBy examining the x-ray scattering off of free-standing films,
tional effects must be considered. First, it is natural to expecthey have measured the superlattice associated with these
that these phaseldike every other smectic phase with in- different phases. They observe a four-layer superlattice in the
plane rotation ordgrshould, in a chiral system, have a slow Sm-Cg,, phase, a three-layer superlattice in the Spj;
twist of the axis associated with their long-range orienta-phase, and a spacing incommensurate with the underlying
tional order. Mode locking occurs when thetal wave vec-  lattice in the SmE, phase. This measurement is consistent
tor (including the natural chiralifyfor specific terms in the with this model once the higher order modespeciallyg/4)
free energy sum to zero. are included, although the interpretation of the Smphase
Second, it is natural to expect thé;B, in general, has a in the context of this model is uncertain. Their measurement
somewhat lower susceptibilityi.e., a less negative value of may also distinguish between this model and the model of
a,) than the neighboring values of the wave vedtohus, ~ Cepic and Zks[11]. Where their model predicts one con-
we expect that this mode locked phase will appear only if thdinuous transition, ours predicts a series of discrete jumps. In
energy decrease associated with the mode locking excee@gperiments, the system is seen to make discrete jumps in the
that associated with the smaller valueaofA detailed treat-  period of the helical pitch, which suggests our model may be
ment of this is complicated and involves several additionamore appropriate for these phases.
parameters. Roughly speaking, however, the energy associ-
ated with a phase witk close toq/3 is — a§/4b3. That of the
mode locked phase is approximateha%/4b3— f, wheref,
is the value of the mode locking,; 333 term for the phases Thus, we have shown that by starting with a simple de-
being considered. Thus mode locking is expected when  scription of a chiral smectic system we can derive a mean-
ingful free energy and model a wide variety of ferroclinic,
antiferroclinic, and ferriclinic phases. While similar in ap-
(am/ag)?<4bsf . proach to several existing models for these phases, we in-
clude in our free energy fourth order terms that do not appear
in the models considered previouslyl1,12. These
Herea,, is the most negative value @i for all k. symmetry-allowed terms encourage mode locking between
Next, it is also possible for there to be mode lockeddifferent Fourier modes. This mode locking, in turn, causes
phases in which several modes, each with different values dfignificant qualitative changes in the resulting phase dia-
k, happen to add up tg=27n. We believe that these are gram.
implausible (except for the slight helical complications dis- Even under the radical assumption that only the ferro-
cussed aboveat least provided that the curvatureagfnear  clinic and “twist” order parameters can be nonzero, our
k=0q/3 is positive. model predicts a number of interesting phases. We find a
Finally, Fourier modes wittk’s smaller than 2r/3 will phase with no tilt which, by construction, we identify with
also experience mode locking once the higher order modetfie smecticA phase. We also find a phase with only ferro-
are included in the free energy. For examﬂ)é‘M. éq/4|2 and clinic order WhICh we n_aturally identify as t_he Sm.ec@(f-
(éqls'éq/(i)(éqlﬁ'éfqlz) are valid terms that also support phase. In addition, we find a number of ferrielectric phases.

mode locking(the first one is allowed as an Umklapp pro- One (see Fig. % bears a strong resemblance to the smectic-

cess. The gauge freedom we saw in the pure twist phaseCY phase. Another, which consists of a helical modulation

(51) represents the relative phase difference between th:¥¥'th a period of three times the layer spacifgge Fig. 7,

particular mode and some arbitrary reference coordinate sy%?g Zﬁgrbgﬁgsiéppeiggneztfgy Svisilee rvgg:ﬁy%ﬁ%gﬂe

tem (in our case, thésq_ mode. Since this gauge freedom is phases, seem not to correspond to any phases yet observed.
present in every Fourier component but does not change thg,ch, jike the model of Lormaret al. [12], our model also
noninteracting free enerdy,, we can always assign 10 it @ pregicts a single Goldstone mode should be present in all the
value such that mode locking lowers the energy of the Sysg gered phases. Additional phas@scluding an antiferro-
tem. Thus, the mode locking terms in the free energy theinic phase(smectic€?) and antiferroclinic two-phase re-
will combine to form an infinite sequence of lockins betweengions] can be found by including additional order param-
modesSy, and S, for every rational numbem/n. There-  eters, but only at the expense of increasing analytical
fore we expect that, on expanding the free energy to all ordifficulty.

ders, mode locking will turn_the continuous model for the

ferriclinic phases of €picand Zeks[11] into a Devil’s stair- ACKNOWLEDGMENT

case, much like the model proposed by Takan&thal. [7].
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VII. CONCLUSIONS



PRE 60 TWIST MODULATED PHASES IN CHIRAL SMECTC . .. 1807

[1] P. G. de Gennes and J. ProBhe Physics of Liquid Crystals C. C. Huang, and L. Furenlid, Phys. Rev. Le#l, 1015
2nd ed.(Oxford University Press, New York, 1983 (1998.
[2] S. Merinoet al, Phys. Rev. B54, 5169(1997). [7] Y. Takanishiet al., Jpn. J. Appl. Phys., Part31, 2023(1991)).
[3] T. Isozaki, Y. Suzuki, and I. Kawamura, Jpn. J. Appl. Phys., [8] R. Bruinsma and J. Prost, J. Phys4]11209(1994.
Part 230, L1573 (1991, [9] M. Yanjashlta and § Miyazima, ferroelectrm& 1(1993.
[10] B. Rovek, M. Cepic and B. Zks Phys. Rev. E54, 3113

[4] H. Takezoe, J. Lee, Y. Ouchi, and A. Fukuda, Mol. Cryst. Liqg. (1997)

Cryst. 202, 85 (199D. _ _ [11] M. Cepicand B. K5 Lig. Cryst. 20, 29 (1996.
[5] E. Gorecka, A. D. L. Chandani, and Y. Ouchi, Jpn. J. AppPl. (151 v/ |, Lorman, A. A. Bulbitch, and P. Toledano, Phys. Rev. E
Phys., Part 23, 131(1990. 49, 1367(1994).

[6] P. Mach, R. Pindak, A.-M. Levelut, P. Barois, H. T. Ngyen, [13] T. Garel and P. Pfeuty, J. Phys.9CL245 (1976.



