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Twist modulated phases in chiral smectic liquid crystals

Jonathan J. Stott and Rolfe G. Petschek
Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106-7079

~Received 27 May 1998; revised manuscript received 28 January 1999!

By considering short period helical planar modulations about the layer normal, we construct a model free
energy for the ferriclinic phases observed in chiral smectic liquid crystals. We then use this free energy to
construct the phase diagram for our model. The resulting phases are compared with the experimentally ob-
served smectic-C* subphases~ferroclinic, antiferroclinic, and heliclinic!. A strong coupling is found between
the ferroclinicq52p/a and the heliclinicq52p/3a modes. This coupling was not considered in previous
models. The resulting additional stability of this ‘‘locked in’’ phase is discussed.@S1063-651X~99!10607-X#

PACS number~s!: 64.70.Md, 61.30.Cz
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I. INTRODUCTION

In a smectic liquid crystal the molecules assemble the
selves into periodic layered structures. By convention,
layer normal defines thez axis of the system. The molecule
of the liquid crystal are anisotropic, which often leads
pronounced birefringence effects. For the systems we
consider, the molecules can be viewed as elongated e
soids, in which case the long axis of the molecule coinci
with the extraordinary index of refraction.

In the smectic-A ~Sm-A) phase, the average orientation
the long axis of the molecules is parallel to the layer norm
In the Sm-C phases, the orientation tilts and develops a co
ponent perpendicular to the layer normal. In the Sm-C phase
itself, the molecules all tilt in the same direction througho
the sample. In a chiral material, on the other hand, as
moves along thez axis, the tilt direction precesses about t
layer normal with a period much larger than the layer sp
ing. This is known as the Sm-C* phase. Because these mo
ecules lack a center of inversion, the Sm-C* phase can pos
sess a spontaneous ferroelectric polarization@1#. This
polarization couples strongly to an applied electric fie
which has applications in the manufacture of optical devic

Ferroclinic phases are liquid crystal phases where the
erage tilt vector points in the same direction from layer
layer, ignoring any rotations due to the chirality~the tilt vec-
tor is defined as the vector difference between the dire
and the layer normal!. In antiferroclinic phases, on the othe
hand, the tilt vector changes direction between adjacent
erscW l 52cW l 11. Ferriclinic phases are the intermediate ca
where the tilt vector is neither parallel nor antiparallel to t
adjacent layers. In the chiral materials we consider bel
these phases also possess spontaneous polarizations;
ferroclinics are necessarily also ferroelectric, etc.

Subphases of the ferroclinic~ferroelectric! Sm-C* phase
have been observed in materials such as 4~1-
methylheptyloxycarbonyl! phenyl 48-octylbiphenyl
4-carboxylate~MHPOBC!. These subphases are known
include at least one antiferroclinic phase~Sm-CA) as well as
a ferriclinic ~Sm-Cg) phase and the uncharacterized Sm-Ca
phase. In other materials, additional ferriclinic and antifer
clinic subphases have been reported in the literature as
@2,3#. The Sm-Cg ferriclinic phase is believed@4,5# to be
PRE 601063-651X/99/60~2!/1799~9!/$15.00
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formed from a repeating three-layer unit with two paral
and one antiparallel tilts~a ‘‘112112 ’’-type structure!.
Recent experimental evidence@6# suggests that other ferri
clinic phases with three-layer and four-layer repeat units
ist as well. To date, neither the structure of the Sm-Ca phase
nor the structure of the majority of the other ferriclin
phases have been experimentally determined.

Nevertheless, several models have been put forward
explain the variety of structures seen in the ferriclinic pha
of chiral smectic liquid crystals. One set of models pred
that the form of the ferroclinic phase~s! is a ‘‘Devil’s stair-
case’’ with a formally infinite series of abrupt step-by-st
changes@7–9# between the completely parallel ordering
the Sm-C* and the completely antiparallel ordering of th
Sm-CA phases. These models generally consider the sys
to be in a superposition of ferroclinic and antiferroclinic o
dering and progress step by step~much like an Ising model!
by rotating the polarization of an entire layer by 180°. T
other set of models are discrete phenomenological mo
@10,11# with competition between nearest and next-near
neighbor interactions leading to a continuously unwindi
pitch, from ferroclinic, through ferriclinic, to antiferroclinic
A variation on this general approach was proposed by L
manet al. @12# that shows a variety of discreet phases inste
of the single continuous phase.

As mentioned above, a common feature of models ba
on the Devil’s staircase is that they assume that for leng
on the order of a few times the layer spacing the molecu
always remain in a single plane: the molecules are eit
parallel or antiparallel. While this is certainly what is ob
served in the Sm-C* and Sm-CA phases, there is no reaso
to assume,a priori, that this is the only possibility. The
discrete models on the other hand, while they do allow
rotations about the layer normal, have used simple exp
sions for the fourth order terms in the free energy and seld
show a very wide variety of possible phase transitions.
the best of our knowledge, no one has previously looked
the implications of including fourth order terms that are sy
metry allowed and provide strong couplings between diff
ent Fourier components.

In this paper, we introduce a free energy that is mo
general than the one previously considered@11,12# for rota-
tions about the layer normal~Sec. II!. From this, we derive
the phase diagrams and structural organization when the
1799 © 1999 The American Physical Society
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1800 PRE 60JONATHAN J. STOTT AND ROLFE G. PETSCHEK
der parameter is nonzero. The possibility of finding a la
number of distinct phases~like the Devil’s staircase and con
sistent with experimental observations of periods three tim
the layer spacing! will be demonstrated in Sec. V.

II. A MODEL FREE ENERGY

We begin by considering the the Sm-C* phase, which we
choose to view as a system of layer-averaged tilt vect
The tilt vectors are constrained to point perpendicular to
layer normal and the magnitude of the tilt vector is equa
the sine of the tilt angle. To simplify the model, we imm
diately assume that this is a bulk system so that surfaces
safely be ignored. Further, we will work in the mean-fie
limit which assumes that the layers are completely unifo
so that all the gradient terms in the free energy are identic
zero. We now will demonstrate how the ferriclinic phas
can be modeled as a series of helical modulations of
average tilt vector. These phases are what we collectiv
refer to as heliclinic phases, since the tilt vector rotates i
helical fashion along thez axis ~the layer normal!.

The Landau free energy of a system is constructed
summing together all the symmetry-allowed combinations
the average tilt vector per layer multiplied by some set
~phenomenological! Landau coefficients. Constructing th
Landau free energy for our model system up to fourth ord
we find

F5(
j < i

Ai , j
(1)~SW i•SW j !1Ai , j

(2)~SW i3SW j !•zŴ

1
1

2 (
j < i

(
l<k

Bi , j ,k,l~SW i•SW j !~SW k•SW l !1O~S6!, ~1!

where the sums range over all layers in the system.

vectorSW l is the average tilt vector for thel th layer. While this
is a break with convention~smectic tilt vectors are normally

written ascW ), we will use SW throughout this paper to hel
draw out the similarities between this model and sim
magnetic models. TheAi , j

(1) and theAi , j
(2) are, by convention,

assumed to vary with temperature while theBi , j ,k,l are con-
sidered constants. Further, we assume that theA’s and the
B’s are short ranged, which is what is observed experim

tally. The chiral term (SW i•SW j )(SW k3SW l) is also symmetry al-
lowed, but we assume that this term is small and may

ignored due to its chiral nature. Any (SW i3SW j )•(SW k3SW l) term
is nonchiral and can be transformed into terms we have
ready included. If we limit interactions to only next-neare
neighbors, then the second order terms in Eq.~1! are the
same as those in the free energy discussed by Cˇ epičand Žekš
@11#. In this paper, however, we allow for fourth order term

beyond the (SW •SW )2 term used in@11#. These terms provide a
important coupling between specific Fourier modes and m
be included in a proper analysis.

Taking the Fourier transform of Eq.~1!,
e
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F5(
k

ak~SW k•SW 2k!1bk~SW k•SW 2k!
2

1(
k

(
k8

(
k9Þk

ck,k8,k9~SW k•SW k8!~SW k9•SW 2k2k82k9!

1O~S6!, ~2!

where the sum is over wave vectorsk52p/na, n561,
62,63, . . . , anda is the smectic layer spacing~see Fig. 1!.
The sixth order terms are expected to be small and will
be considered further. Definingq52p/a, it is easily seen
thatSW q is the ferroclinic order parameter of the smectic (SW is
anXY spin!, while SW q/2 is the antiferroclinic order paramete
What we callSW q is often writtenSW 0, but to better illustrate
the relationship between the different wave vectors, we w
always refer to the ferroclinic order parameter asSW q .
The next term,SW q/3 , we call the heliclinic order paramete
which is similar to the order parameter for the plan
helimagnetic phases observed in some rare-earth mag
materials such as Terbium@13#. The fourth order term
(SW q•SW 2q/3)(SW 2q/3•SW 2q/3) provides a direct coupling~mode
locking! between theSW q andSW q/3 order parameters. We wil
show below that the phase of this term can always be cho
so that this term has a negative coefficient and thus ifSW q/3 is
present it will become energetically favorable forSW q to have
a nonzero magnitude as well. This mode locking extends
range over which it is energetically favorable to have a f
roclinic component. This extra stabilizing term has importa
consequences when we construct the phase diagram. Bec
additional terms are likely to be small and because we w
to avoid the difficulties inherent in a full-blown field theory
we will assume from here on that we are working in a reg
of the phase diagram where we do not need to consider F
rier components withn.3. At this level of approximation,
there are no other mode lockings between different Fou
modes.

Explicitly writing out the summation up ton53, we find

F5F01F int ,

where

F05a1~SW q•SW 2q!1a2~SW q/2•SW 2q/2!1a3~SW q/3•SW 2q/3!

1b18~SW q•SW 2q!21b28~SW q/2•SW 2q/2!
21b38~SW q/3•SW 2q/3!

2

1c128 ~SW q•SW 2q!~SW q/2•SW 2q/2!1c138 ~SW q•SW 2q!~SW q/3•SW 2q/3!

1c238 ~SW q/2•SW 2q/2!~SW q/3•SW 2q/3! ~3!

and

FIG. 1. Example of a heliclinic phase (k52p/4a in this ex-
ample!.
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F int5b19~SW q•SW q!~SW 2q•SW 2q!1b29~SW q/2•SW q/2!~SW 2q/2•SW 2q/2!

1b39~SW q/3•SW q/3!~SW 2q/3•SW 2q/3!1c129 ~SW q•SW 2q/2!

3~SW 2q•SW q/2!1c139 ~SW q•SW 2q/3!~SW 2q•SW q/3!

1c239 ~SW q/2•SW 2q/3!~SW 2q/2•SW q/3!1c12- ~SW q•SW q/2!

3~SW 2q•SW 2q/2!1c13- ~SW q•SW q/3!~SW 2q•SW 2q/3!

1c23- ~SW q/2•SW q/3!~SW 2q/2•SW 2q/3!1
c1333

2
@~SW q•SW 2q/3!

3~SW 2q/3•SW 2q/3!1~SW 2q•SW q/3!~SW q/3•SW q/3!#. ~4!

Since SW k is the Fourier transform of a real function,SW k*
5SW 2k and so we can immediately rewrite Eq.~4! as

F int5b19uSW q•SW qu21b29uSW q/2•SW q/2u21b39uSW q/3•SW q/3u2

1c129 uSW q•SW 2q/2u21c139 uSW q•SW 2q/3u21c239 uSW q/2•SW 2q/3u2

1c12- uSW q•SW q/2u21c13- uSW q•SW q/3u21c23- uSW q/2•SW q/3u2

1c1333Re$~SW 2q•SW q/3!~SW q/3•SW q/3!%. ~5!

III. ORDER PARAMETERS

The ferroclinic order parameter, as a real valuedXY spin,
has two independent variables. These can be taken as
magnitude and direction of the vector. We define thex axis
of our coordinate system using the ferroclinic order para
eterSW q ,

SW q5uSW quxŴ[XxŴ . ~6!

The antiferroclinic order parameter is also a realXY spin and
so it too must have two independent variables. Let the fi
be the vector magnitude and the second be the coordi
system relative to the ferroclinic order parameter,

SW q/25uSW q/2u@xŴcos~f!1yŴ sin~f!#[Y@xŴ cos~f!1yŴ sin~f!#.
~7!

With the heliclinic order parameter, unlike with the ferr
clinic or antiferroclinic order parameters,1q/3 is not the
same as2q/3. Thus, the heliclinic order parameter is a co
plex XY spin with four free parameters. Parametrize t
order parameter as

SW q/35uSW q/3u@xŴ cos~a!eic2 iyŴ sin~a!eis#

5Zeic@xŴ cos~a!2 iyŴ sin~a!ei (s2c)#, ~8!

whereZ, a, c, ands are the four independent variables.
Using the definitions~6!–~8!, and substituting into Eqs

~3! and ~5! we find

F05a1X21a2Y21a3Z21b18X
41b28Y

41b38Z
41c128 X2Y2

1c138 X2Z21c238 Y2Z2 ~9!
the

-

st
te

-
s

and

F int5b19X
41b29Y

4cos2~2f!1b39Z
4@12sin2~2a!sin2

3~c2s!#1~c129 1c12- !cos2~f!X2Y21~c139 1c13- !

3cos2~a!X2Z21~c239 1c23- !Y2Z2$cos2~f2a!

2sin~2f!sin~2a!cos2@~c2s!/2#%1c1333XZ3 cos~a!

3@cos2~a!cos~3c!2sin2~a!cos~2s1c!#. ~10!

The above free energy contains a large number of f
parameters that must be found by minimization. This yield
large system of simultaneous equations that must be so
to produce a complete solution. In this paper we only co
sider the special case where antiferroclinic behavior is
present and consequentlyY50. Since there is no mode lock
ing between the antiferroclinic component and any otherSW k

for k>2p/3, this is the same as constraininga2 , c128 , andc238
to be positive. These added constraints simplify the free
ergy considerably and we are left with

F05a1X21a3Z21b1X41b3Z41c138 X2Z2 ~11!

and

F int52b39Z
4 sin2~2a!cos2~c2s!1c13cos2~a!X2Z2

1c1333XZ3 cos~a!@cos2~a!cos~3c!

2sin2~a!cos~2s1c!#, ~12!

where we have defined

c135c139 1c13- ,

b15b181b19 , ~13!

b35b381b39 .

Note that while the free energy does not explicitly depend
the sign ofa, the parametera3 must have an implicit depen
dence ona since a chiral system distinguishes between rig
handed and left-handed modulations. We will return to t
point later on when we construct the real-space orientati
of the molecules.

Next we reparametrizes andc by defining

g5s2c,
~14!

3d5s12c

so that Eq.~12! becomes

F int52b39Z
4 sin2~2a!cos2~g!1c13cos2~a!X2Z2

1c1333XZ3 cos~a!@cos~3d!cos~g!cos~2a!

1sin~3d!sin~g!#. ~15!

Sinced only appears in the final term of Eq.~15! we can
quickly find the value ofd that minimizes the free energy
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]F

]~3d!
52sin~3d!cos~g!cos~2a!1cos~3d!sin~g!50.

~16!

IV. MODE LOCKING

All the terms in Eq.~15! except for thec1333 term are
positive semidefinite functions ofa. Thus, the sign of cos(a)
is completely determined by this one term and conseque

cos~a!XZ3c1333@cos~3d!cos~g!cos~2a!1sin~3d!sin~g!#

<0 ~17!

if F is to have its minimal value. Let cos(a) be such that

2cos~a!c1333XZ3ucos~3d!cos~g!cos~2a!

1sin~3d!sin~g!u.0. ~18!

X and Z as the magnitude of vectors are intrinsically no
negative. If we rewrite the absolute value as

ucos~3d!cos~g!cos~2a!1sin~3d!sin~g!u

5A@cos~3d!cos~g!cos~2a!1sin~3d!sin~g!#2,

~19!

then after expanding and substituting Eq.~16! into Eq. ~19!
to eliminated, we find

ucos~3d!cos~g!cos~2a!1sin~3d!sin~g!u

5A12sin2~2a!cos2~g!. ~20!

This yields the free energy

F5F01F int ,

F05a1X21a3Z21b1X41b3Z41c138 X2Z2,
~21!

F int52b39Z
4 sin2~2a!cos2~g!1c13cos2~a!X2Z2

2c1333XZ3 cos~a!A12sin2~2a!cos2~g!.

The noninteracting portion of the free energy,F0, behaves
much like a magnet in the mean-field approximation and
arbitrary wave vectork has the form

f k5ak~SW k•SW 2k!1bk~SW k•SW 2k!
21(

k8
ck,k8~SW k•SW 2k!

3~SW k8•SW 2k8!.

For any given modek, the summedck,k8 terms act as a per
turbation to the quadraticak term. This shifts the transition
point in a nontrivial manner, but does not modify the und
lying physics. The interaction termF int , on the other hand, is
responsible for~among other things! the mode locking be-
tween theSW q andSW q/3 modes, which stabilizes specific Fou
rier components. These restoring forces add phases to
phase diagram that do not have any analog in the sim
magnetic systems modeled byF0.
ly

-

r

-

the
le

V. PHASE DIAGRAM AND CHARACTERIZATION

Since all the temperature dependence of the free en
~21! is assumed to be contained ina1 and a3, these two
parameters determine the phase of the system. First, con
the parameterg. Looking at the free energy~21!, it is imme-
diately apparent that ifb39,0 then cos2(g)50 always mini-
mizes the free energy. If, on the other hand,b39 is positive, it
is useful to consider a reparametrized free energy. Let

z5cos~a!,

j25cos2~g!sin2~2a!,

and the free energy~21! becomes

F5F02b39Z
4j21c13X

2Z2z22c1333XZ3zA12j2.
~22!

First minimizing with respect toz, we find

z5
c1333Z

2c13X
A12j2.

From the definition ofz, if this results inuzu.1 then the
minimum must beuzu51. Assume for the time being that th
equilibrium value ofz is such thatuzu,1 since ifz51 then
j250 from our definition ofj2 which implies thatg is un-
determined. Substituting back into the free energy,

F5F02
c1333

2

4c13
Z41S c1333

2

4c13
2b39DZ4j2. ~23!

By inspection, the equilibrium value ofj is

j250, c1333
2/4c132b39.0,

~24!

j25`, c1333
2/4c132b39,0.

Since mathematicallyuzu<1, however,j2 can never exceed
unity. Looking back on the definitions ofz andj, the proper
interpretation of this result is that cos2(g) takes on only two
values: zero or unity. The equilibrium value of cos2(g) is the
one that results in the lower free energy~24!.

First, consider the case when cos2(g)50, whose phase
diagram is summarized in Fig. 2. Minimizing the free ener
~21! yields a system of equations:

]F

]X
50

5a1X12b1X31XZ2@c138 1c13cos2~a!#

2
1

2
c1333cos~a!Z3, ~25!
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]F

]Z
50

5ZS a312b3Z21X2@c138 1c13cos2~a!#

2
3

2
c1333XZ cos~a! D , ~26!

]F

]a
505XZ2@2c13X cos~a!2c1333Z#. ~27!

SinceX andZ are the magnitudes of vectors and hence m
be non-negative, fora1.0 and a3.0 the system is in an
isotropic phase with

X5Z5cos~a!50. ~28!

Since it has no tilt, this phase must be the Sm-A phase of the
liquid crystals. Exactly at the pointa15a350, the quadratic
terms in the free energy vanish and there is a critical po

Next, consider the quadrant wherea1,0. Since a1 is
negative, we expect thatX will be nonzero. For large enoug
values ofa3, one always findsZ50 and as a consequenc
cos(a) is unspecified. Equations~25! and~26!, however, are
easily solved. Anticipating the case whenZÞ0, we assign
cos(a)50 and so

X252a1/2b1 , ~29!

Z250, ~30!

cos~a!50, ~31!

which are the results one would expect for a simple fer
magnet or, in our case, the ferroclinic phase.

As a3 decreases,Z eventually becomes nonzero. Wheth
this happens fora3 positive or negative is determined by th
sign ofc138 . Equations~25!–~27! are once again easily solve
and we now find

FIG. 2. Phase diagram forb39,0. Phase I is the isotropic phas
II is the ferroclinic, III is the ferriclinic 0,cos(a),1 phase, and IV
is the ferriclinic cos(a)51 phase. Dotted lines are coordinate ax
solid lines are continuous transitions, heavy dashed lines are
continuous transitions.
st

t.

-

r

X25
a3c138 22a1@b32~c1333

2/4c13!#

4b1@b32~c1333
2/4c13!#2c138

2
, ~32!

Z25
a1c138 22a3b1

4b1@b32~c1333
2/4c13!#2c138

2
, ~33!

cos~a!5c1333Z/2c13X. ~34!

Note that cos(a) is proportional toZ, which justifies my pre-
vious statement that cos(a)50 whenZ50. From Eq.~32!,
the phase transition fromZ250 to Z2.0 must occur when

a35
c138

2b1
a1 . ~35!

When cos(a)51, the system undergoes a continuous tra
sition to a new phase, since the value of cos(a) is unable to
increase further. Setting Eq.~32! equal to unity, this transi-
tion occurs when

a15
2b1c1333

414c138 c13
2

8b3c13
2 22c13c1333

21c138 c1333
4

a3 . ~36!

In this phase, the equilibrium values ofX andZ are given by

05a1X12b1X31~c138 1c13!XZ22c1333Z
3/2, ~37!

05a3Z12b3Z31~c138 1c13!X
2Z23c1333XZ2/2. ~38!

While of simple form, these equations are difficult to sol
for arbitrary coefficients and we will leave them as they a

While it might appear that a stable phase withX50, Z
Þ0 is possible, this is not the case. WhenX50, minimizing
the free energy in Eq.~25! requires that cos(a)50. Physi-
cally, however, whenX50, the coordinate system is n
longer defined and so, by extension,SW q/3 must be rotationally
invariant. From the definition ofSW q/3 in Eq. ~8! and setting
cos(a)50, one finds that

SW q/352 iZyŴ ,

which is not rotationally invariant. Further, looking at th
stability of the free energy at that point we see that

]2F

] cos~a!2U
cos(a)50

52c13X
2Z2,

which is zero whenX50. This implies an inflection point in
the free energy which is incompatible with the requireme
from Eq. ~25! that cos(a)50 be a minimum whenX50.
Hence, we conclude that no additional phases can appe
long as cos2(g) remains zero. Thus as a consequence of
mode locking betweenSW q/3 andSW q we find that a ferroclinic
component is present even when all terms containingX2 in
the free energy are positive.

Minimizing the free energy when cos2(g)51, on the other
hand, yields a system of coupled equations

,
is-
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]F

]X
50

5a1X12b1X31XZ2@c138 1c13cos2~a!#

2
1

2
c1333cos~a!Z3ucos~2a!u, ~39!

]F

]Z
50

5a3Z12b3Z31X2Z@c138 1c13cos2~a!#

2
3

2
c1333cos~a!XZ2ucos~2a!u22b39Z

3 sin2~2a!,

~40!

]F

]a
50

58b39Z
4 cos~a!cos~2a!12c13X

2Z2 cos~a!

2c1333XZ3S Ucos~2a!U14
cos2~a!cos~2a!

ucos~2a!u D .

~41!

These equations correspond to the phase diagram sum
rized in Fig. 3. If Z50, then these equations reduce to t
cos2(g)50 case and we recover the solution for a SmA
phase in Eq.~28! and for a ferroclinic phase in Eq.~29!.

It is known from basic thermodynamics that the syst
undergoes a phase transition when the free energy
cos2(g)51 is equal to the free energy with cos2(g)50 be-
cause the functional form of the free energy changes abru
at that point. Let

DF[Fucos2(g)512Fucos2(g)50 . ~42!

The transition from cos2(g)50 to cos2(g)51 occurs when
DF<0.

FIG. 3. Phase diagram forb39.0. Phase I is the isotropic phas
II is the ferroclinic, III is the ferriclinic 0,cos(a),1 phase, IV is
the ferriclinic cos(a)51 phase, and V is the pure helix (X50)
phase. Depending on the sign ofD F, region IV may or may not be
present in a given system. Dotted lines are coordinate axis, s
lines are continuous transitions, heavy dashed lines are discon
ous transitions.
a-

th

tly

WhenZÞ0, the system is in either the cos2(g)50 phase
we looked at above Eq.~32! or it is in a new cos2(g)51
phase, depending on the sign ofDF in Eq. ~42!. In the
cos2(g)51 phase, the full set of Eqs.~39!–~41! must be
solved to completely determine the phase diagram of
system. A few solutions, however, can be obtained by
spection. First, if cos(a)51, then the system~39!, ~40! be-
comes identical to~25!, ~26! and we conclude that in this
region cos2(g) is undetermined, which we could have in
ferred from the definition ofSW q/3 in Eqs.~8! and ~14!.

On the other hand, whenX50 it is immediately apparen
that

X50,

Z52a3/2~b32b39!, ~43!

cos~a!51/A2

is the solution.
Finally, if cos(a)50 anda1.0 then the free energy onc

again takes on the functional form of a magnet in a me
field and we are left with

X50,

Z52a3/2b3 ,

cos~a!50. ~44!

However, since we know thatb39 is positive@or else cos2(g)
would be identically zero#, the solution given in Eq.~43!
always has a lower free energy than Eq.~44!. Consequently,
Eq. ~44! is unstable with respect to Eq.~43!.

Numerical investigations~assigning order of magnitud
estimates to the various constant parameters! indicate that for
some range of parameters, there is also an intermediaX
Þ0, ZÞ0, 0,cos(a),cos(p/4) phase with cos2(g)51. The
analytic solution, however, is sufficiently difficult that we a
unable to investigate this phase any further.

Now that we have completed an outline of the phase d
gram both for cos2(g)50 ~Fig. 2! and for cos2(g)51 ~Fig. 3!,
let us examine what this says about the molecular orienta
within the smectic layers. If cos2(g)50, then from the defi-
nition ~14! of g we find

s5c1np

and so from the definition ofSW q/3 in Eq. ~8!

SW q/35Zeic@xŴ cos~a!2 iyŴeinpsin~a!#

5Zeic@xŴ cos~6a!2 iyŴ sin~6a!#, ~45!

FIG. 4. Phase III, cos2(g)50 @XÞ0, ZÞ0, 0,cos(a),1]. The

resulting tilt vector,cW l , is plotted forl 51,2,3.
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which, given the constraint on cos(a) in Eq. ~18!, minimizes
F when

Re$eic%511.

Physically, this means that the heliclinic order parameterSW q/3
is completely in phase~modulo 2p/3) with the ferroclinic
order parameterSW q . The ambiguity in the sign ofa occurs
because cos(a) is an even function ofa and we have not
specified howa3 depends on the sign of the chiral pitch. F
convenience, we assume for the rest of this paper thaa3
varies with the chirality such that1a is the lower energy
solution.

To find the real-space tilt vector, just sum the Four
series

SW l 5(
k

~e2 i l k/nSW k!5@X1Z cos~a!cos~2pl /3!#xŴ

1Z sin~a!sin~2pl /3!yŴ . ~46!

When ucos(a)u,1, bothX andZ are nonzero and the syste
is in the two order parameter phase as sketched in Fig
When cos(a)51, they component in Eq.~49! vanishes and
both cos2(g)50 and cos2(g)51 take on the same functiona
form,

SW l 5@X1Z cos~2pl /3!#xŴ . ~47!

This form, with its planar three-layer unit cell and nonze
spontaneous polarization~see Fig. 5!, is quite similar to that
proposed by Takezoeet al. @4# for the Sm-Cg phase.

In the cos2(g)51 phase~s!, on the other hand, from th
definition of g we find

s5c1np/2.

Substituting into Eq.~8! as we did to get Eq.~45!, we now
find that

SW q/35Zeic@xŴ cos~a!2 iyŴenp/2 sin~a!# ~48!

5Zeic@xŴ cos~6a!1yŴ sin~6a!#, ~49!

FIG. 6. Phase III, cos2(g)51 @XÞ0, ZÞ0, 0,cos(a),1]. The

resulting tilt vector,cW l , is plotted forl 51,2,3.

FIG. 5. Phase IV@XÞ0, ZÞ0, cos(a)51]. The resulting tilt

vector,cW l , is plotted forl 51,2,3.
r

4.

with X, Z, anda given by the system of equations in Eq
~39!–~41!. The net effect is to change the phase of they

component ofSW q/3 so that instead ofSW l •yŴ}sin(2pl /3),

SW l 5@X1Z cos~a!cos~2pl /3!#xŴ1Z sin~a!cos~2pl /3!yŴ
~50!

as shown in Fig. 6.
When sin(2a)51, the ferroclinic order parameter vanish

(X50) and we are left with a purely helical phase~Fig. 7!

SW l 5Z@cos~2pl /31c!xŴ1sin~2pl /31c!yŴ #, ~51!

wherec is an arbitrary phase. Sincec is now a gauge vari-
able this implies the existence of a spontaneously bro
symmetry with its corresponding Goldstone mode, just as
spontaneously broken symmetry of the Sm-C* gives rise to a
Goldstone mode in that phase.

VI. ANALYSIS

In this paper, we focused on terms in the free energy u
O(S4) and only considered the Fourier modesSW q andSW q/3 .
We did this both to simplify the problem and because
only expect these two Fourier modes to have large ma
tudes. Consequently, they should be the easiest to mea
experimentally. Despite this simplified description, we find
two order parameter region, a mode locked phase, and
single order parameter phases, as shown in Table I. Th
phases are qualitatively similar to many of the phases
served experimentally. In particular, Fig. 5 bears a stro
resemblance to the form of the Sm-Cg proposed by Takezoe
et al. @4#. This model is thus able to explain a much grea
range of phase behaviors than the phenomenological m
of Čepič and Žekš @11#. Our results, however, still do no
provide a complete picture of the various Sm-C* subphases
due to the absence of the antiferroclinic order parameter.
antiferroclinic phases are known to play an important r

FIG. 7. Phase V@X50, ZÞ0, sin2(2a)51]. The resulting tilt

vector,cW l , is plotted forl 51,2,3.

TABLE I. Summary of the different heliclinic phases and th
order parameter~s! associated with each.

Phase Description X Z ‘‘Polarization’’

I Paraclinic~Sm-A* ) 0 0 N/A

II Ferroclinic ~Sm-C* ) .0 0 linear

III Heliclinic—two order param. .0 .0 elliptical

IV Heliclinic—mode locked .0 .0 linear

V Heliclinic 0 .0 circular
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both in the phase diagram of materials such as MHPO
Solving the model in the presence of all three order para
eters, however, is beyond the scope of this paper.

To construct an even more complete theory, especi
one that includes modes whose wave vectors are not rati
fractions of the zone boundary wave vector, several ad
tional effects must be considered. First, it is natural to exp
that these phases~like every other smectic phase with in
plane rotation order! should, in a chiral system, have a slo
twist of the axis associated with their long-range orien
tional order. Mode locking occurs when thetotal wave vec-
tor ~including the natural chirality! for specific terms in the
free energy sum to zero.

Second, it is natural to expect thatSW q/3 , in general, has a
somewhat lower susceptibility~i.e., a less negative value o
ak! than the neighboring values of the wave vectork. Thus,
we expect that this mode locked phase will appear only if
energy decrease associated with the mode locking exc
that associated with the smaller value ofa. A detailed treat-
ment of this is complicated and involves several additio
parameters. Roughly speaking, however, the energy as
ated with a phase withk close toq/3 is 2ak

2/4b3. That of the
mode locked phase is approximately2a3

2/4b32 f m wheref m

is the value of the mode lockingc1333 term for the phases
being considered. Thus mode locking is expected when

~am /a3!2&4b3f m .

Heream is the most negative value ofak for all k.
Next, it is also possible for there to be mode lock

phases in which several modes, each with different value
k, happen to add up toq52pn. We believe that these ar
implausible~except for the slight helical complications di
cussed above!, at least provided that the curvature ofak near
k5q/3 is positive.

Finally, Fourier modes withk’s smaller than 2p/3 will
also experience mode locking once the higher order mo
are included in the free energy. For example,uSW q/4•SW q/4u2 and
(SW q/6•SW q/6)(SW q/6•SW 2q/2) are valid terms that also suppo
mode locking~the first one is allowed as an Umklapp pr
cess!. The gauge freedom we saw in the pure twist ph
~51! represents the relative phase difference between
particular mode and some arbitrary reference coordinate
tem ~in our case, theSW q mode!. Since this gauge freedom i
present in every Fourier component but does not change
noninteracting free energyF0, we can always assign to it
value such that mode locking lowers the energy of the s
tem. Thus, the mode locking terms in the free energy t
will combine to form an infinite sequence of lockins betwe
modesSW q/m andSW q/n for every rational numberm/n. There-
fore we expect that, on expanding the free energy to all
ders, mode locking will turn the continuous model for t
ferriclinic phases of Cˇ epičand Žekš@11# into a Devil’s stair-
case, much like the model proposed by Takanishiet al. @7#.
Our Devil’s staircase, however, assumes the existenc
short period helical modulations about the layer norm
which we believe better captures the physics of the ferricli
phases.
.
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We have recently become acquainted with a preprint
Mach et al. @6# of an experimental study they have pe
formed on 10OTBBB1M7, a liquid crystal compound wit
two distinct ferriclinic phases~Sm-CFI1 and Sm-CFI2) in
addition to Sm-Ca , ferroclinic, and antiferroclinic phases
By examining the x-ray scattering off of free-standing film
they have measured the superlattice associated with t
different phases. They observe a four-layer superlattice in
Sm-CFI2 phase, a three-layer superlattice in the Sm-CFI1
phase, and a spacing incommensurate with the underl
lattice in the Sm-Ca phase. This measurement is consiste
with this model once the higher order modes~especiallyq/4)
are included, although the interpretation of the Sm-Ca phase
in the context of this model is uncertain. Their measurem
may also distinguish between this model and the mode
Čepič and Žekš @11#. Where their model predicts one con
tinuous transition, ours predicts a series of discrete jumps
experiments, the system is seen to make discrete jumps in
period of the helical pitch, which suggests our model may
more appropriate for these phases.

VII. CONCLUSIONS

Thus, we have shown that by starting with a simple d
scription of a chiral smectic system we can derive a me
ingful free energy and model a wide variety of ferroclini
antiferroclinic, and ferriclinic phases. While similar in ap
proach to several existing models for these phases, we
clude in our free energy fourth order terms that do not app
in the models considered previously@11,12#. These
symmetry-allowed terms encourage mode locking betw
different Fourier modes. This mode locking, in turn, caus
significant qualitative changes in the resulting phase d
gram.

Even under the radical assumption that only the fer
clinic and ‘‘twist’’ order parameters can be nonzero, o
model predicts a number of interesting phases. We fin
phase with no tilt which, by construction, we identify wit
the smectic-A phase. We also find a phase with only ferr
clinic order which we naturally identify as the smectic-C*
phase. In addition, we find a number of ferrielectric phas
One ~see Fig. 5! bears a strong resemblance to the smec
Cg phase. Another, which consists of a helical modulat
with a period of three times the layer spacing~see Fig. 7!,
may have been experimentally observed by Machet al. @6#.
The other phases~Figs. 4–6!, while clearly ferroclinic
phases, seem not to correspond to any phases yet obse
Much like the model of Lormanet al. @12#, our model also
predicts a single Goldstone mode should be present in al
ordered phases. Additional phases@including an antiferro-
clinic phase~smectic-CA) and antiferroclinic two-phase re
gions# can be found by including additional order param
eters, but only at the expense of increasing analyt
difficulty.
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